Topic: Graph Theory and Tree

I. Define the following:

1.	Simple graph	15.	Rooted tree
2.	Multi graph	16.	Complete n-tree
3.	Loop	17.	Offspring
4.	Incident	18.	Leaves
5.	Parallel Edge	19.	Level of tree
6.	Regular graph	20.	Height of tree
7.	Complete graph	21.	. Walk
8.	Connected graph	22.	. Cycle
9.	Disconnected graph	23.	. Spanning of tree
10.	Euler circuit	24.	. Sub-tree
11.	Hamiltonian path	25.	Isomorphism of graph
12.	Euler graph	26.	. Trail
13.	Hamiltonian graph	27.	. Path
14.	Tree	28.	Pendant vertex.

II. Answer the following question by observing the given graph.

- **1.** Is it simple graph?
- 2. Write the degree of each vertex and classify it.
- 3. Write the adjacent vertex to vertex $v_{2.}$
- **4.** Write the all parallel edges
- 5. Write the closed walk for vertex v_1
- **6.** Is it Euler graph?
- 7. Is it Hamiltonian graph?
- **8.** Is it connected or disconnected.
- 9. Write the adjacency matrix.
- **10.** Write any one cycle for vertex v_3 .
- **III.** Draw the graph with specified property or explain why no such graph exist.
 - 1. Simple graph with 5 vertices of degree 2, 3, 3, 3, and 5.
 - 2. Simple graph with 4 vertices of degree 1, 2, 3, 4.
 - **3.** Graph with 5 vertices with degree 1, 2, 3, 3, 5.
 - **4.** Simple graph with 5 vertices of degree 1, 1, 1, 4.

Topic: Graph Theory and Tree

- **IV.** Find the adjacency matrices for the following directed graphs.
- **V.** Find directed graphs that have the following adjacency matrices:
- VI. Check whether following graphs are isomorphic or not?

VII.

Consider the tree with root v_0 shown below.

- a. What is the level of v_5 ?
- c. What is the height of this rooted tree?
- e. What is the parent of v_2 ?
- g. What are the descendants of v_3 ?

- b. What is the level of v_0 ?
- d. What are the children of v_3 ?
- f. What are the siblings of v_8 ?

VIII. Use kruskal's algorithm to find minimum spanning tree.Strat with vertex 'e'.

Topic: Graph Theory and Tree

IX. Use primes algorithm to find minimum spanning tree.

Strat with vertex 'e'.

- X. Construct the tree for the given algebraic expression. a. 3 - (x+(6*4/(2-3)))b. (x/y)/((x*3)-(z+4))
- **XI.** Which of the following graph is Euler or Hamiltonian?
- **XII.** Which of the following graph is connected or disconnected

XIII. Draw K₅ graph.